Teksvideo. jika kita melihat soal seperti ini diketahui limit x menuju tak hingga dikalikan 6 akar x * cos 3 per akar X dikali Sin 5 per akar x Bagaimana cara mengerjakannya bersama-sama dulu menjadi bentuk seperti ini b y = akar x akar x adalah bilangan tak hingga dan kita akar makanya bijinya adalah akan mendekati 0 3 1 suatu bilangan yang sangat besar maka akan mendekati 0 nya selain itu
Teksvideo. Haiko Friends di sini ada pertanyaan. Tentukan hasil dari limit fungsi berikut di sini ada rumus untuk limit x mendekati infinit dari akar dari X kuadrat ditambah B ditambah C dikurangi akar dari X kuadrat ditambah QX + R maka untuk a lebih besar daripada P hasil adalah Infinite untuk a = p maka hasil adalah P Min Q per 2 akar a untuk a lebih kecil daripada p, maka hasil adalah
HaiLaila, kakak coba bantu jawab ya! Jadi, nilai dari lim (xββ) βx+ β ( (x)+1)-βx = β. Berikut penjelasannya. Soal ini menggunakan konsep limit tak hingga bentuk akar, kita bisa selesaikan dengan cara subtitusi biasa untuk soal ini lim (xββ) βx+ β ( (x)+1)-βx {βx- βx=0} = lim (xββ) β ( (x)+1) substitusi nilai x
Teksvideo. Jika menemukan soal seperti ini kita harus merasionalkan bentuk akar a terlebih dahulu sehingga hasilnya akan menjadi seperti ini. Ingatlah konsep dari a kuadrat dikurang b kuadrat = A min b dikali dengan a. + b ini dapat kita gunakan untuk mempermudah perkalian sehingga limit menuju Infinite menjadi seperti ini 2 min 1 kuadratdikurang akar 4 x kuadrat min 6 x min 5 dikuadratkan
Darigrafik diketahui bahwa nilai limit kiri dan limit kanan tidak sama untuk x mendekati 2 modifikasikan hingga jika disubstitusikan tidak menjadi bentuk tak tentu, 2x jika diubah bentuk akar akan menjadi β4x2 Rumus trik cepat mengerjakan limit tak hingga yang ke 2 dapat digunakan untuk contoh soal limit tak hingga bentuk akar yang di mana
cara mengirim al fatihah untuk seseorang yang masih hidup. ο»ΏKelas 11 SMALimit FungsiLimit Fungsi Aljabar di Tak HinggaLimit Fungsi Aljabar di Tak HinggaLimit FungsiKALKULUSMatematikaRekomendasi video solusi lainnya0334lim x ->tak hingga 2x+3^2-7/8x^2-1=....0319lim x->tak hingga x+2-akarx^2+x+1=...0137 Nilai lim x-> tak hingga 2x-33x+1/2x^2+x+1 adalah..0649limit x mendekati tak hingga akar4x^2+x-1-2x+1=...Teks videoJika kalian menemukan soal seperti ini pertama-tama kita harus mengerti terlebih dahulu konsep dasar dari limit debit ini merupakan limit x menuju Infinity atau X menuju tak nggak tahu teman saya akan menjelaskan terlebih dahulu. Jika ada bentuk limit dari X menuju Infinity atau tak hingga yang bentuknya adalah seperti ini akar dari AX kuadrat + BX + C dikurang dengan akar dari PX + Q x x p x kuadrat + QX dan + r Dan a = p syaratnya adalah a = p. Maka hasilnya otomatis langsung menjadi B Min Q per 2 dikalikan akar dari a ini adalah bentuk yang akan kita gunakan untuk mengerjakan soal yang di atas utama kita tulis dulu saja limit x menuju Infinity dari akar x + p dikalikan dengan x + kita langsung kalikan saja sehingga hasilnya menjadi x kuadrat + PX + QX + PQ oke, lalu dikurang dengan x x kita dapat Ubah menjadi akar dari X kuadrat akar-akar dari X kuadrat hasilnya adalah x dari sini kita Sederhanakan terlebih lagi jadi limit x menuju Infinity akar x kuadrat P dan Q nya kita gabungkan jadi + p + q dalam kurung dikalikan dengan x ditambah dengan p * p * q dikurang dengan kode-kode ini Dia tidak memiliki 0 dikali X Karena tidak memiliki banyaknya Halo dikurang 0 juga ini menjadi patokan kita untuk patokan P Q dan R nya Langsung saja kita kerjakan dengan bentuk ini. hasilnya menjadi B Min q, b nya adalah p + q, maka p + q dikurang dengan Q nya adalah 0 x kurang 0 dibagi semuanya dengan 2 dikalikan dengan akar dari a karena a = p maka kita ambil saya salah satunya dan yang koefisien dari X kuadrat nya adalah a a adalah 1 Maka hasilnya adalah p + q dibagi dengan 2 x β 1 adalah 2 * 1, maka 2 sesuai dengan opsi yang D jika kita Ubah menjadi 1 per 2 dikalikan dengan p + q sadar oxide pada soal sampai jumpa pada pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Kelas 11 SMALimit FungsiLimit Fungsi Aljabar di Tak HinggaLimit Fungsi Aljabar di Tak HinggaLimit FungsiKALKULUSMatematikaRekomendasi video solusi lainnya0334lim x ->tak hingga 2x+3^2-7/8x^2-1=....0319lim x->tak hingga x+2-akarx^2+x+1=...0137 Nilai lim x-> tak hingga 2x-33x+1/2x^2+x+1 adalah..0649limit x mendekati tak hingga akar4x^2+x-1-2x+1=...Teks videopada soal kali ini kita punya limit x mendekati tak hingga untuk fungsi berikut jika menemukan bentuk fungsinya seperti ini kita akan menggunakan metode kali akar Sekawan ya Oke kita punya X2 dikurangi dengan akar x kuadrat min 2 x + 6 berarti kita punya sekawannya adalah x + 2 ditambah Oke ditambah dengan akar x kuadrat min 2 x + 6 bagaimana cara mengkalikan ya Jadi kita tulis ulang dulu di sini limit x mendekati tak hingga untuk x + 2 dikurangi ya akar x kuadrat min 2 x + 6 lalu kita kalikan dengan akar sekawannya tadi yang tandanya itu dikurang jadi ditambah seperti ini oke lalu karena kita mengalir ke bagian atas pecahan kita bagi juga yang bagian bawahnya ya ini kan sebenarnya bentuknya x + 2 min akar x kuadrat min 2 x + 6 per satu ya Jadi yang bawahnya per 1 nya 23 kali kanseperti ini Jadi sebenarnya ini bentuknya kita kalikan dengan 1 ya karena jika kita kalikan dengan 1 itu tidak mengubah bentuk aslinya seperti itu Oke selanjutnya berarti kita kalikan untuk yang penyebutnya berarti kita punya kan 1 dikalikan akar Sekawan tadi oke tapi kalau yang atas kita punya misalkan Saya punya bentuk perkalian Aljabar A min b dikali a + b maka sebenarnya ini akan = a kuadrat + b kuadrat ya di sini berarti kita punya hanya itu adalah x + 2 dan b adalah akar x kuadrat min 2 x + 6 berarti kita punya limit x mendekati tak hingga di sini ya kita punya x + 2 kuadrat dikurangi dengan akar x kuadrat dikurangi 2 x + 6 dikuadratkan hasilnya adalah x kuadrat min 2 x + 6 kita bagi denganx + 2 ditambah akar dari X kuadrat min 2 x + 6 y sepertinya ini berarti kita punya akan sama dengan limit x mendekati tak hingga berarti kita punya di sini adalah x kuadrat + 4 x + 4 yang lalu langsung saja kita kalikan ini negatif x kuadrat dari kita punya dikurangi x kuadrat negatif X negatif 100 ditambah 2 x yang ini berarti kita punya negatif 6 atau dikurangi dengan 6 kita bagi yang bagian bawah itu masih belum berubah bentuknya masih seperti ini x + 2 + x kuadrat min 2 x ditambah dengan 6 kita operasikan yang bagian pembilang dari pecahan atau yang atas berarti kita punya x kuadrat nya habis karena saya kurangi disini lalu selanjutnya saya punya 4 x + 2 x itu berarti 6 x 4 dikurangi 6 berarti negatif 2Yang bawah masih belum berubah karena kita masih tidak bisa mengoperasikannya di sini ya. Sekarang kalau sudah kita di sini untuk mengerjakan limit x menuju tak hingga kita cari pangkat dari Excel tingginya tidak punya disini adalah x ^ 1 ya atau akar dari X kuadrat. Oke itu adalah pangkat tertingginya maka kita kedua ruas ya dengan 1 per pangkat tertingginya atau kita bagi kedua ruas dengan pangkat tertingginya x 1 x pangkat 1 atau 1 per x kuadrat ya Oke berarti kalau sudah di sini Saya punya ini langsung saja saya kalikan atau Saya bahagia sama saja cuman saya tulis di sini biar rapi saya kali kan ya dengan 1 per X dibagi 1 per akar x kuadrat 1 x kuadrat + 1 x itu sama ya Oke berarti kita punya di sini limitX mendekati tak hingga 6 X dikali Tan 1 per x 6 dikurangi dengan 2 per X yang berarti lalu kita bagi disini x + 2 dikalikan dengan 1 per akar x kuadrat Oke berarti kita punya X per akar x kuadrat atau X per X yang nilainya 1 + dengan 2 per akar x kuadrat 2x lalu saya punya di sini ditambah dengan nanya berarti kan kita punya x kuadrat per x kuadrat dari 1 dikurangi dengan yang ini berarti kalau masuk dalam akar kita punya x kuadrat ya 2 per x kuadrat 2 per X lalu saya punya disini selanjutnya adalah ditambah dengan 6 per x kuadrat seperti ini ya. Oke = masukkan nilai x nya itu tak hingga berarti saya punya di sini adalah selanjutnya 6 dikurangi dengan 2 per tak hingga dibagi dengan 1 + 2Hingga ditambah dengan akar ya yaitu akarnya 1 dikurangi 2 per tak hingga di tambah dengan 6 tak hingga kuadrat seperti ini. Oke ini akan sama dengan sesuatu dibagi dengan tak hingga itu hasilnya adalah 0, ya sesuatu dibagi dengan tak hingga pangkat berapa pun itu hasilnya akan nol berarti = 6 dikurangi 0 dibagi dengan 1 + 0 + β 10 + 0 di sini ya berarti kita punya = 6 dibagi dengan 1 + 16 / 2. Berarti nilainya kita punya ini akan = 3 jadi jawabannya adalah 3 disini sesuai dengan pilihan yang D soal Oke sampai jumpa di video berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Blog Koma - Pada artikel kali ini kita akan membahas materi Penyelesaian Limit Tak Hingga. Limit tak hingga ini maksudnya bisa hasil limitnya adalah tak hingga $ \infty $ atau limit dimana variabelnya menuju tak hingga $ x \to \infty $. Untuk memudahkan, silahkan juga baca materi "Pengertian Limit Fungsi" dan "Penyelesaian Limit Fungsi Aljabar". Khusus pada limit tak hingga pada artikel ini kita akan lebih menitik beratkan pada fungsi aljabar saja. Untuk limit tak hingga fungsi trigonometri akan kita bahas pada artikel lain secara khusus dan lebih mendalam. Hasil Limitnya Tak hingga Suatu limit hasilnya tak hingga $\infty$ jika hasil limitnya semakin membesar menuju tak hingga, bisanya terjadi ketika pembaginya adalah 0 $ \frac{1}{0} = \infty $ . Berikut teorinya $ \displaystyle \lim_{x \to \, +0 } \frac{1}{x^n} = + \infty \, $ dan $ \, \displaystyle \lim_{x \to \, -0 } \frac{1}{x^n} = \left\{ \begin{array}{cc} +\infty & , \text{ untuk } \, n \, \text{ genap} \\ -\infty & , \text{ untuk } \, n \, \text{ ganjil} \end{array} \right. $ dengan $ n \, $ bilangan asli. Catatan Jika pangkatnya genap $n \, $ genap maka hasilnya selalu positif. Contoh 1. Tentukan nilai $ \displaystyle \lim_{x \to 2 } \frac{1}{x-2^2} \, $ ? Penyelesaian *. Berikut grafik dari fungsi $ fx = \frac{1}{x-2^2} $ Dari tabel terlihat bahwa untuk $ x \, $ mendekati 2, maka hasil fungsinya nilai $y $ semakin besar menuju tak hingga. Jadi, hasil dari $ \displaystyle \lim_{x \to 2 } \frac{1}{x-2^2} = \infty $ 2. Tentukan nilai limit bentuk berikut a. $ \displaystyle \lim_{x \to 5^+ } \frac{x+2}{x-5^5} \, \, \, $ b. $ \displaystyle \lim_{x \to 3^- } \frac{x}{x-3^8} \, \, \, $ c. $ \displaystyle \lim_{x \to 3^- } \frac{x}{x-3^7} $ Penyelesaian a. Karena $ x \to 5^+ \, $ artinya $ x \, $ mendekati 5 dari kanan, sehingga nilai $ x - 5 \, $ positif. $ \displaystyle \lim_{x \to 5^+ } \frac{x+2}{x-5^5} = \frac{5+2}{5^+ - 5^5} = \frac{7}{+0^5} = + \infty $ b. $ \displaystyle \lim_{x \to 3^- } \frac{x}{x-3^8} = \frac{3}{3^- - 3^8 } = \frac{3}{-0^8} = \frac{3}{0} = +\infty $ c. $ \displaystyle \lim_{x \to 3^- } \frac{x}{x-3^7} =\frac{3}{3^- - 3^7 } = \frac{3}{-0^7} = \frac{3}{-0} = -\infty $ Penyelesaian Limit di Tak Hingga Untuk menyelesaikan limit menuju tak hingga $ x \to \infty $ , kita gunakan limit dasarnya yaitu $ \, \, \displaystyle \lim_{x \to \infty } \frac{a}{x^n} = 0 $ dengan $ a \, $ bilangan real dan $ n \, $ bilangan asli. Artinya kita harus mengarahkan bentuk limit di tak hingga menjadi rumus dasar di atas dengan cara i. Buat fungsinya menjadi bentuk pecahan, jika bentuknya dalam akar maka kalikan dengan bentuk sekawannya merasionalkan. ii. Bagi variabelnya dengan pangkat tertinggi. Contoh 3. Tentukan hasil limit di tak hingga berikut a. $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} \, \, \, $ b. $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} \, \, \, $ c. $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } $ d. $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } \, \, \, $ e. $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} $ Penyelesaian a. Bagi dengan $ x^3 \, $ untuk pembilang dan penyebutnya. $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x^3 + 3x^2 + 5}{x^3}}{\frac{5x^3 - 4x + 1}{x^3} } \\ & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x^3}{x^3} + \frac{3x^2}{x^3} + \frac{5}{x^3} }{\frac{5x^3 }{x^3} - \frac{ 4x }{x^3} + \frac{ 1}{x^3} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{3}{x} + \frac{5}{x^3} }{5 - \frac{ 4 }{x^2} + \frac{ 1}{x^3} } \\ & = \frac{ 2 + \frac{3}{\infty} + \frac{5}{\infty ^3} }{5 - \frac{ 4 }{\infty ^2} + \frac{ 1}{\infty ^3} } \\ & = \frac{ 2 + 0 + 0 }{5 - 0 + 0 } \\ & = \frac{ 2 }{5 } \\ \end{align} $ Sehingga hasilnya $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} = \frac{ 2 }{5 } $ b. Bagi dengan $ x^8 \, $ untuk pembilang dan penyebutnya, $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} & = \displaystyle \lim_{x \to \infty } \frac{\frac{-2x^2 - 5}{x^8}}{\frac{5x^8 - 4x + 3}{x^8} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ \frac{-2}{x^6} - \frac{5}{x^8} }{ 5 - \frac{4}{x^7} + \frac{3}{x^8} } \\ & = \frac{ \frac{-2}{\infty ^6} - \frac{5}{\infty ^8} }{ 5 - \frac{4}{\infty ^7} + \frac{3}{\infty^8} } \\ & = \frac{ 0 - 0 }{ 5 - 0 + 0 } \\ & = \frac{ 0 }{ 5 } \\ & = 0 \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} = 0 $ c. Bagi dengan $ x^5 \, $ untuk pembilang dan penyebutnya, $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } & = \displaystyle \lim_{x \to \infty } \frac{\frac{x^5 - 2x^3 + 5x - 1}{x^5}}{\frac{3x^2 - 4x + 1 }{x^5}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ 1 - \frac{2}{x^2} + \frac{5}{x^4} - \frac{1}{x^5} }{ \frac{3}{x^3} - \frac{4}{x^4} + \frac{1}{x^5} } \\ & = \frac{ 1 - \frac{2}{\infty ^2} + \frac{5}{\infty ^4} - \frac{1}{\infty ^5} }{ \frac{3}{\infty ^3} - \frac{4}{\infty ^4} + \frac{1}{\infty ^5} } \\ & = \frac{ 1 - 0 + 0 - 0 }{ 0 - 0 + 0 } \\ & = \frac{ 1 }{ 0} \\ & = \infty \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } = \infty $ d. Bagi dengan $ x \, $ untuk pembilang dan penyebutnya, $\begin{align} \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } & = \displaystyle \lim_{x \to \infty } \frac{\frac{2x + 1}{x}}{ \frac{\sqrt{9x^2 + 2x - 7}}{x} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \frac{\sqrt{9x^2 + 2x - 7}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \sqrt{\frac{9x^2 + 2x - 7}{x^2} } } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 2 + \frac{1}{x} }{ \sqrt{ 9 + \frac{2}{x} - \frac{7}{x^2} } } \\ & = \frac{ 2 + \frac{1}{\infty} }{ \sqrt{ 9 + \frac{2}{\infty} - \frac{7}{\infty ^2} } } \\ & = \frac{ 2 + 0 }{ \sqrt{ 9 + 0 - 0 } } \\ & = \frac{ 2 }{ \sqrt{ 9 } } \\ & = \frac{ 2 }{3} \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } = \frac{ 2 }{3} $ e. Kali sekawan agar terbentuk pecahan dan bagi $ x $ $ \begin{align} & \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} \\ & = \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} \times \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ 4x^2 +2x-3 - 4x^2 - x + 3 }{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3x - 6 }{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}} \\ & = \displaystyle \lim_{x \to \infty } \frac{ \frac{ 3x - 6 }{x}}{ \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{x} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \frac{\sqrt{4x^2 +2x-3} + \sqrt{4x^2 - x + 3}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \frac{\sqrt{4x^2 +2x-3} }{\sqrt{x^2}} + \frac{ \sqrt{4x^2 - x + 3}}{\sqrt{x^2}} } \\ & = \displaystyle \lim_{x \to \infty } \frac{ 3 - \frac{6}{x} }{ \sqrt{4 +\frac{2}{x} - \frac{3}{x^2} } + \sqrt{4 - \frac{1}{x} + \frac{3}{x^2}} } \\ & = \frac{ 3 - \frac{6}{\infty} }{ \sqrt{4 +\frac{2}{\infty} - \frac{3}{\infty ^2} } + \sqrt{4 - \frac{1}{\infty} + \frac{3}{\infty ^2}} } \\ & = \frac{ 3 - 0}{ \sqrt{4 + 0 - 0 } + \sqrt{4 - 0 + 0 } } \\ & = \frac{ 3 }{ \sqrt{4 } + \sqrt{4 } } \\ & = \frac{ 3 }{ 2 + 2 } \\ & = \frac{ 3 }{ 4 } \end{align} $ Sehingga nilai $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} = \frac{ 3 }{ 4 } $ Penyelesaian Limit di Tak Hingga Yang lebih praktis Berikut cara menyelesaikan limit di tak hingga yang lebih mudah $\clubsuit $ Limit tak hingga pecahan Misalkan fungsinya $ fx = ax^n + a_1x^{n-1} + ... \, $ dengan pangkat tertinggi $ n \, $ dan $ gx = bx^m + b_1 x^{m-1} + .... $ dengan pangkat tertinggi $ m \, $ , maka limit di tak hingganya $ \displaystyle \lim_{x \to \infty } \frac{ax^n + a_1x^{n-1} + ...}{bx^m + b_1 x^{m-1} + ....} \left\{ \begin{array}{ccc} = \frac{0}{b} & = 0 & , \text{untuk } n m \end{array} \right. $ Catatan Ambil koefisien pangkat tertingginya. $\clubsuit $ Limit tak hingga bentuk akar *. Bentuk pertama, $ \displaystyle \lim_{x \to \infty } \sqrt{ax^2 + bx + c } - \sqrt{ax^2 + px + q } = \frac{b-p}{2\sqrt{a}} $ *. Bentuk kedua, $ \displaystyle \lim_{x \to \infty } \sqrt{ax^n + bx^\frac{n}{2} + c } - \sqrt{ax^n + px^\frac{n}{2} + q } = \frac{b-p}{2\sqrt{a}} $ Pangkat didepan adalah dua kali pangkat kedua dan nilai $ a \, $ sama pada kedua akar. Contoh 4. Tentukan hasil limit di tak hingga dari soal nomor 3 di atas, a. $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} \, \, \, $ b. $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} \, \, \, $ c. $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } $ d. $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } \, \, \, $ e. $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} $ f. $ \displaystyle \lim_{x \to \infty } \sqrt{9x^8 +3x^4-3} - \sqrt{9x^8 + 5x^4 + 1} $ Penyelesaian a. Pangkat tertingginya $ x ^3 \, $ , artinya ambil koefisien $ x^3 $ , $ \displaystyle \lim_{x \to \infty } \frac{2x^3 + 3x^2 + 5}{5x^3 - 4x + 1} = \frac{2}{5} $ b. Pangkat tertingginya $ x^8 \, $ , artinya ambil koefisien $ x^8 \, $, $ \displaystyle \lim_{x \to \infty } \frac{-2x^2 - 5}{5x^8 - 4x + 3} = \displaystyle \lim_{x \to \infty } \frac{0x^8-2x^2 - 5}{5x^8 - 4x + 3} = \frac{0}{5} = 0 $ c. Pangkat tertingginya $ x^5 \, $ , artinya ambil koefisien $ x^5 $ , $ \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{3x^2 - 4x + 1 } = \displaystyle \lim_{x \to \infty } \frac{x^5 - 2x^3 + 5x - 1}{0x^5 + 3x^2 - 4x + 1 } = \frac{1}{0} = \infty $ d. Pangkat tertingginya $ x \, $ , artinya ambil koefisien $ x $ , $ \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 + 2x - 7} } = \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ \sqrt{9x^2 } } = \displaystyle \lim_{x \to \infty } \frac{2x + 1}{ 3x } = \frac{2}{3} $ e. $ \displaystyle \lim_{x \to \infty } \sqrt{4x^2 +2x-3} - \sqrt{4x^2 - x + 3} = \frac{b-p}{2\sqrt{a}} = \frac{2-1}{2\sqrt{4}} = \frac{3}{4} $ f. $ \displaystyle \lim_{x \to \infty } \sqrt{9x^8 +3x^4-3} - \sqrt{9x^8 + 5x^4 + 1} = \frac{b-p}{2\sqrt{a}} = \frac{3-5}{2\sqrt{9}} = \frac{-2}{6} = - \frac{1}{3} $ 5. Tentukan hasil limit tak hingga berikut ini, a. $ \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - x + 2 $ b. $ \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } $ c. $ \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} $ Penyelesaian a. Ubah terlebih dulu sehingga keduanya membentuk akar. $ \begin{align} \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - x + 2 & = \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - \sqrt{x + 2^2} \\ & = \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - \sqrt{x^2 + 4x + 4} \\ & = \frac{b-p}{2\sqrt{a}} \\ & = \frac{-5-4}{2\sqrt{1}} \\ \displaystyle \lim_{x \to \infty } \sqrt{x^2 - 5x } - x + 2 & = \frac{-9}{2} \end{align} $ b. Ubah terlebih dulu sehingga keduanya membentuk akar. $ \begin{align} \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } & = \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } \\ & = \displaystyle \lim_{x \to \infty } \sqrt{2x - 3^2} - \sqrt{4x^2 +x - 7 } \\ & = \displaystyle \lim_{x \to \infty } \sqrt{4x^2-12x + 9} - \sqrt{4x^2 +x - 7 } \\ & = \frac{b-p}{2\sqrt{a}} \\ & = \frac{-12-1}{2\sqrt{4}} \\ \displaystyle \lim_{x \to \infty } 2x - 3 - \sqrt{4x^2 +x - 7 } & = \frac{-13}{4} \end{align} $ c. Misalkan $ y = 5^x , \, $ untuk $ x \, $ menuju tak hingga, maka $ y \, $ juga menuju tak hingga, kemudian ambil koefisien pangkat tertingginya $ \begin{align} \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} & = \displaystyle \lim_{5^x \to 5^\infty } \frac{5^x + 3 }{5^{x+2} - 7} \\ & = \displaystyle \lim_{5^x \to 5^\infty } \frac{5^x + 3 }{5^x . 5^2 - 7} \\ & = \displaystyle \lim_{y \to \infty } \frac{y + 3 }{y . 5^2 - 7} \\ & = \displaystyle \lim_{y \to \infty } \frac{y + 3 }{25y - 7} \\ \displaystyle \lim_{x \to \infty } \frac{5^x + 3 }{5^{x+2} - 7} & = \frac{1}{25} \end{align} $ Silahkan teman-teman juga simak dan pelajari materi limit tak hingga dengan fungsi trigonometri yaitu pada artkel "Limit Tak Hingga Fungsi Trigonometri".Selain itu, ada juga kegunaan dari limit fungsi tak hingga adalah untuk menentukan persamaan asimtot mendatar suatu fungsi.
Lim βββ x + sin x/x = lim βββ 1 + sin x/xlim βββ x + sin x/x = 1 + sinβ/βlim βββ x + sin x/x = 1 + 0lim βββ x + sin x/x = 1 Pertanyaan baru di Matematika 1. Tentukan nilai x yang memenuhi persamaan 72β22 = 52β22 a. 1 b. 11 c. -11 d. 22 e. -22 2. Tentukan himpunan penyelesaian dari persamaan 3 + 21 β¦ 2 = 3 + 217 a. = {β7,3; β7; β6,3; 0; 7} b. = {7,3; β7; β6,3; 0; 7} c. = {7,3; 7; β6,3; 0; 7} d. = {7,3; 7; 6,3; 0; β7} e. ={0,β6,3;β7;7;β7,3} nilai x yang memenuhi persamaan 35+100 = 55+100 a. 0 b. 5 c. -5 d. 20 e. -20 sebuah mobil menghabiskan 4 liter bensin untuk menempuh jarak 80km. banyak bensin mobil itu untuk menempuh jarak 200km adalah.... Hasil sensus penduduk dari 40 warga di suatu Rukun Tetangga RT sebagai berikutUmur tahun = F1 - 10 = 311 β 20 = 621 β 30 = 831 β 40 = β¦ 941 β 50 = 751 β 60 = 461 β 70 = 2 71 β 80 = 1Jumlah 40 Median data tersebut adalah .... tahun.β tersebut di jual dengan harga Rp Maka kerugian pak Ibnu adalah. 7. Pak Ahmad membeli TV dengan harga Rp Setelah beberapa bulan, β¦ TV tersehat di jual dengan harga Rp Maka persentas kerugian pak Ibu adalah 8. Aqillah membeli baju seharga Rp karena hari itu toko ulang tala, memberikan diskon 30 %, maka harga baju yang harus dibayar aqillah adalah.... 9. Pak Lilik menjual sepeda dengan harga Rp la menderita kerugian 10% Harga Pembelian sepeda tersebut adalah....... 10. Charly membeli makanan di KFC. Harga menu yang dpilih Charly Rp dan dikenakan pajak pertambahan nilai PPN sebesar 10 %, maka harga yang harus di bayar charly adalah.........β KAK TOLONG JAWAB KAK BESOK DI KUMPUL KAK TOLONG LAH KAK!!! AKU JANJI KAK BUAT BINTANG BANYAK DEH KAK β
Kelas 11 SMALimit FungsiLimit Fungsi Aljabar di Titik TertentuLimit Fungsi Aljabar di Titik TertentuLimit FungsiKALKULUSMatematikaRekomendasi video solusi lainnya0048Nilai lim x->4 4x^2+5x+1=0232Nilai limit x->0 4x/1-2x^1/2-1+2x^1/2=.... 0138Jika fx=x^2-8x+8^1/3, maka nilai dari lim x->0 1/4...0150Nilai lim x->2 x^2-4/akarx^2+5-3=...Teks videoDi sini ada pertanyaan tentang limit x menuju tak hingga bentuk akar kurang akar sehingga bentuk X yang disini kita Tuliskan menjadi X ^ 22 kemudian diakarkan sama saja nilainya 3 bentuk ini kita Tuliskan nggak jadi limit x menuju tak hingga akar ini kita operasikan ya x + a x + B menjadi x kuadrat ditambah di sini ada aku disini ada BX kita tarik keluar berarti menjadi X dikali a. + b kemudian ditambah dengan a b dikurangi dengan akar x kuadrat bentuk ini kita akan kalikan dengan akar sekawannya limit x menuju tak hingga Jadi kalau ada bentuk akar A min akar B kita kalikan dengan kawannya menjadi akar a plusper akar a + akar B menjadi bentuk A min b per akar a + akar b maka bentuk ini kita ke akarnya menjadi x kuadrat ditambah x * a + b ditambah a b dikurangi x kuadrat per 2 x akar x kuadrat + x * a + b ditambah dengan ditambah dengan akar x kuadrat Ini sama ini kita coret sehingga bentuk ini sudah bentuk pecahan kita kalikan dengan bentuk 1 per dari pangkat paling tinggi nya disini Budi penyebutnya pangkat paling tinggi nya adalah x ^ 2 diakarkan jadi ini adalah seperx kuadrat per akar x kuadrat sama saja dengan seperti sini kita kalikan masuk menjadi limit x menuju tak hingga ini nih sama habis tinggal a + b ditambah berarti ini AB per x nya Nikita kali masuk ya Jadi kalau ada akar x berakar sama saja akar x per y ini kali masuk sehingga kini semuanya dibagi x kuadrat maka bentuknya kita Tuliskan menjadi x kuadrat / x kuadrat berarti 1 ditambah X dibagi x kuadrat berarti a + b x kemudian ada bentuk AB x kuadratditambah dengan 1 akar x + akar x kuadrat per akar 1 maka kita masuk nilai x nya jika kita mendapat 1 per tak hingga nilainya adalah sama dengan nol sehingga bentuknya kalau kita masukkan tak hingganya batik adalah a + b AB per tak hingga per tak hingga berarti 0 per akar 1 + AB hingga hingga batin 0 jika ditambah akar 1 maka ini a + b per β 11 + 1 a + b per 2 maka pilihan kita adalah yang c sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
limit x mendekati tak hingga bentuk akar